試験名:学群編入学試験

区	分	標準的な解答例又は出題意図
数学 1		1. (1)
	19	$ax^2 - bxy^3 + y^6 = 1$ に $(x, y) = (1, 1)$ を代入すると, $a - b + 1 = 1$ より $a = b$ 。
		$F_{x}(x,y) = 2ax - by^3$
	*0	$F_y(x,y) = -3bxy^2 + 6y^5$
		$F_x(1,1) = 2a - b = a$
		$F_y(1,1) = -3b + 6 = -3a + 6$ $F_y(x,y) = -a$
		$\frac{dy}{dx} = -\frac{F_x(x,y)}{F_y(x,y)}$ より、(1,1) での傾きは $\frac{-a}{-3a+6} =$
		$\frac{1}{3}(1+\frac{2}{a-2})$ で、 $2 < a$ で単調減少する。よって、こ
		の値は $3 \le a \le 4$ のとぎ, $\frac{2}{3} \le \frac{dy}{dx}$ _ \P をとる。
		2. (1)
		$e^{x+y} = 1 + (x+y) + \frac{1}{2!}(x+y)^2 + R_3$
		よって求める多項式は
		$1 + x + y + \frac{1}{2}x^2 + xy + \frac{1}{2}y^2$
		(2)
		$e^{x+y} = 1 + (x+y) + \frac{1}{2!}(x+y)^2 + \frac{1}{3!}(x+y)^3 + R_4$
		$\sin x = x - \frac{1}{3!}x^3 + R_5$
		3: これらの積のうち 3 次以下の項のみを並べたものが
		求める多項式
		$x + x^2 + xy + \frac{1}{3}x^3 + x^2y + \frac{1}{2}xy^2$
		₩

試験名:学群編入学試験

以聚石 :	उ कर क	福入子队聚
区	分	標準的な解答例又は出題意図
数学 1	**************************************	3. (1) M は極座標を使って
		$M = \int_0^{2\pi} d\phi \int_0^{\frac{\pi}{3}} \sin\theta d\theta \int_{-\frac{1}{2}}^2 (9 - 4r)r^2 dr$
		tos Ø
		で与えられる。 よって $a = \frac{\pi}{3}$, $b = \frac{1}{\cos \theta}$. $c = 9r - 4r^3$ となる。
		(2)
		$M = \int_0^{2\pi} d\phi \int_0^{\frac{\pi}{3}} \sin\theta d\theta \int_{\frac{1}{\cos\theta}}^2 (9 - 4r)r^2 dr$
		$= 2\pi \int_0^{\frac{\pi}{3}} \sin \theta d\theta \left[3r^3 - r^3 \right]_{\frac{1}{\cos \theta}}^2$
		$=2\pi\int_0^{\frac{\pi}{3}} (8-3\frac{1}{\cos^3\theta} + \frac{1}{\cos\theta}) \sin\theta d\theta$
	1	$= 2\pi \left[-8\cos\theta - \frac{3}{2}\frac{1}{\cos^2\theta} + \frac{1}{3}\frac{1}{\cos^3\theta} \right]_0^{\frac{\pi}{3}}$
		$= 2\pi(-4 - 6 + \frac{8}{3} + 8 + \frac{3}{2} - \frac{1}{3}) = \frac{11}{3}\pi$
	=	TA IN INC.
		≥#G
	-,	

試験名:学群編入学試験

区分	標準的な解答例又は出題意図
数学 2 (1)	$x = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = s \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ -2 \\ 0 \\ 1 \end{pmatrix}$
(2)	$x = u \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} + v \begin{pmatrix} -3/\sqrt{12} \\ -1/\sqrt{12} \\ 1/\sqrt{12} \\ 1/\sqrt{12} \end{pmatrix}$
(3)	$\mathbf{x}_0 = \begin{pmatrix} -3 \\ -1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ -1 \\ 2 \end{pmatrix}$
(4)	$Ax_0'' = \begin{pmatrix} -5 & -3 & 3 & 3 \\ -3 & -3 & -5 & 1 \\ 3 & -5 & -3 & -1 \\ 3 & 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3-3+6 \\ -3+5+2 \\ -5+3-2 \\ 1+1+6 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ -4 \\ 8 \end{pmatrix} = 4x_0''$
(5)	$A^{n}x_{0} = A^{n}x_{0}' + A^{n}x_{0}'' = (-8)^{n}x_{0}' + 4^{n}x_{0}'' = (-8)^{n}\begin{pmatrix} -3\\-1\\1\\1 \end{pmatrix} + 4^{n}\begin{pmatrix} 0\\1\\-1\\2 \end{pmatrix}$
	* *** *** *** *** *** *** *** *** ***

試験名:学群編入学試験

区分	標 準 的 な 解 答 例 又 は 出 題 意 図
物理学 1	1. (1)
	$2\frac{J}{m}$
	$ \textcircled{4} \mu \cdot mg \cdot a $
e e	\bigcirc $I\frac{d\omega}{dt}$
* * * * * *	
	$\sqrt[3]{2}ma^2$
	8
	(2)
	$1) h = \frac{7}{5}a \text{OLB}$
	球はすべらない (球の表面の速度が 0)。 球は、初速度のまま直線運動を続ける。
	2) $h > \frac{7}{5}a$ のとき
	球の回転の方が速い。球の速度は大きくなり、回転は遅くなる。 すべりがなくなると、等速直線運動を続ける。
	3) $h < \frac{7}{5}a$ Obe
	球の回転の方が遅い。球の速度は小さくなり、回転は速くなる。
	h < a の時は、回転は逆方向になる。 すべりがなくなると、等速直線運動を続ける。
# R	

試験名:学群編入学試験

区	分	標 準 的 な 解 答 例 又 は 出 題 意 図
物理学2		
(1)		0
(2)	4	(図省略) $ \Delta \boldsymbol{B} = \frac{\mu_0 j}{2\pi} \cdot \left(h^2 + {y'}^2\right)^{-\frac{1}{2}} \cdot \Delta y$
(3)		$\left(0,-h(h^2+{y'}^2)^{-\frac{1}{2}},-y'(h^2+{y'}^2)^{-\frac{1}{2}}\right).$
(4)	a a	(図省略) -y'を流れる直線電流が点Qにつくる磁場は、y'を流れる直線電流がつくる磁場と同じ大きさをもち、(0,-h,y')の向きを向いている。したがって、両者の和を取るとz成分は打ち消しあう。導体平板内のどこにy'を取っても-y'を流れる直線電流があるため、点Qの磁束密度は、y軸の方向を向く。
(5)		$ B = \frac{\mu_0 j}{2\pi} \int_{-\tan^{-1}(W/2h)}^{\tan^{-1}(W/2h)} d\theta = \frac{\mu_0 j}{\pi} \tan^{-1}(W/2h)$
(6)		$0 < z $ \mathcal{C}
(7)		$F_{AB} = Ia(1,0,0) imes \left(0,-rac{\mu_0 j}{2},0 ight) = Ia(0,0,-rac{\mu_0 j}{2})$ F_{BC} :電流と磁場の方向が平行なため力は働かない: $(0,0,0)$ $F_{CD} = Ia(-1,0,0) imes \left(0,-rac{\mu_0 j}{2},0\right) = Ia(0,0,rac{\mu_0 j}{2})$ F_{DA} :電流と磁場の方向が平行なため力は働かない: $(0,0,0)$
(8)		$F = (0,0,0), N = (0,a,0) \times Ia\left(0,0,\frac{\mu_0 j}{2}\right) = \left(\frac{Ia^2\mu_0 j}{2},0,0\right)$

試験名:学群編入学試験

試験名:字群科	人字試験
区 分	標 準 的 な 解 答 例 又 は 出 題 意 図
化学 1 1. (1)	原子やイオンから電子を取り去ってイオン化するために必要なエネルギー。
(2)	O_2 分子の分子軌道において、縮退した 2 つの π^* 軌道が形成し、各軌道にスピンが同じ向きの電子が 1 つずつ入るから。
(3)	原子の大きさの近い B と F の間には強いπ結合が形成されるために, B の求電子性が低下するから。
2. (1)	NO ₂ ⁺ : (c) NO ₃ ⁻ : (a)
(2) (i)	N_2O_5 NO_2 O_2 $m(1-a)$ $2am$ am l^2
(ii)	$p = \left(1 + \frac{3}{2}a\right)p_0$
я	z.
	.s
	+5

試験名:学群編入学試験

区分	標準的な解答例又は出題意図
	(株 年 11) な 所 日 2) へ 16 田 20 16 日
3. (1)	$\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = -k_1[\mathrm{A}]$
(2)	$[A] = [A]_0 \exp(-k_1 t)$
(3)	$\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d}t} = -k_2[\mathrm{C}]^2$
(4)	$\frac{1}{[C]} - \frac{1}{[C]_0} = k_2 t$ あるいは, $[C] = \frac{[C]_0}{1 + k_2 t [C]_0}$
(5)	(2) の結果より、1 次反応の半減期は ln2/k ₁ で表されるのに対して、(4)の結果より、2 次反応の半減期は 1/(k ₂ [C] ₀)で表されるため.
-	

試験名:学群編入学試験

試験名:字群	入字試験 【埋工字群 応用埋工字類】
区 分	標準的な解答例又は出題意図
化学 2 1. (1) (2)	2-プロピル-1-ヘプテン-3-イン (<i>R</i>)-2-ヒドロキシプロパン酸
2. (1)	Br NH ₂
(2)	ОН
3.	アセチレン, エチレン, ベンゼン, エタン 理由:アセチレン, エチレンおよびエタンの炭素-炭素結合は, それ ぞれ三重結合, 二重結合および単結合であり, この順番に結合が長く なる。一方, 共鳴混成体であるベンゼンの炭素-炭素結合は, 単結合 と二重結合の間の長さになっているため。
4.	2,3-ジメチルブタン 理由:分岐状の2,3-ジメチルブタンの表面積は直鎖状のヘキサンより も小さいため、2,3-ジメチルブタンの分子間力(ファンデルワールス 力)はヘキサンよりも弱い。そのため、2,3-ジメチルブタンはヘキサ ンよりも沸点が低くなる。
5.	ピリジン 理由: ピリジンの窒素原子上の非共有電子対は芳香環の共鳴構造に関与していないため, プロトン化しても芳香族性は保たれる。一方, ピロールの窒素原子上の非共有電子対は芳香環の共鳴構造に関与しており, プロトン化すると芳香族性が保たれなくなるため。
	ar ar

試験名:学群編入学試験

区 分	標準的な解答例又は出題意図
6. (1)	a) オルト・パラ異性体 b) メタ異性体 c) オルト・パラ異性体
(2)	c), a), b) 理由: 芳香族化合物の求電子置換反応は, 芳香族環の電子密度が高いほど速くなる。メチル基はブロモ基およびシアノ基に比べて電子供与性が高いため, c)が最も反応が速くなる。一方, シアノ基はブロモ基に比べて電子求引性が高いため, b)が最も反応が遅くなる。
7. (1)	
(2)	CH ₃ O H
(3)	CH ₃ CH ₃
(4)	но~~он